

# **Executive IT Infrastructure & Sustainability Report**

Example Client | Dataset Scope: 8,143 Assets | NEO Analysis

### 1. EXECUTIVE ANALYSIS



LEGACY ASSETS

4,082

**Impact**: 50% of the fleet is beyond its 5-year lifecycle, posing significant security risks from unsupported hardware, higher failure rates, and poor performance.



WINDOWS 11 BLOCKERS

4,210

**Impact:** These devices cannot upgrade to Windows 11, creating a critical compliance gap as Windows 10 EOL approaches. This requires immediate budget planning for replacement.



ANNUAL ENERGY COST

\$289,155

**Impact:** This direct operational cost is inflated by inefficient legacy hardware. Modernizing the fleet can reduce this OpEx by up to 40% per asset.



CARBON FOOTPRINT

2,452 t

**Impact:** Represents a significant environmental footprint. A strategic hardware refresh can directly address and lower this figure, supporting key ESG goals.



AVERAGE ASSET AGE

7.8 Yrs

**Impact:** An average age this high indicates a reactive refresh cycle, leading to decreased productivity and increased support tickets due to unexpected hardware failures.



MODEL FRAGMENTATION

**153** 

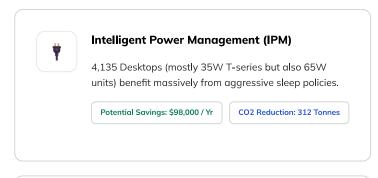
**Impact:** High fragmentation increases management complexity and security risks. Standardizing models can streamline support and reduce total cost of ownership (TCO).

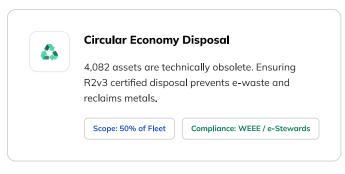


LAPTOPS

3,942

48% of total assets



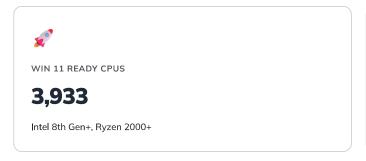


DESKTOPS

4,135

51% of total assets

### 2. SUSTAINABILITY & GREEN IT OPTIMIZATION

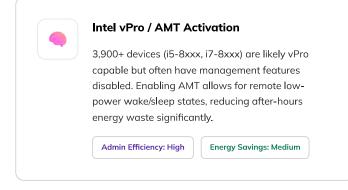


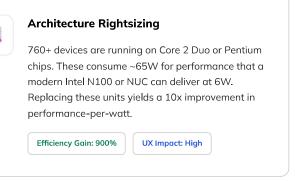







### 3. CPU ECOSYSTEM & PERFORMANCE


A deep dive into the processing power powering the infrastructure, highlighting architectural efficiency and OS compatibility risks.














## **Top Processors by Volume**

| RANK | CPU MODEL           | GENERATION             | TDP (WATTS) | WIN 11 STATUS | COUNT |
|------|---------------------|------------------------|-------------|---------------|-------|
| 1    | Intel Core i3-9100T | 9th Gen (Coffee Lake)  | 35W         | SUPPORTED     | 890   |
| 2    | Intel Core i5-8365U | 8th Gen (Whiskey Lake) | 15W         | SUPPORTED     | 825   |
| 3    | Intel Core i3-9300T | 9th Gen (Coffee Lake)  | 35W         | SUPPORTED     | 785   |
| 4    | Intel Core i5-8265U | 8th Gen (Whiskey Lake) | 15W         | SUPPORTED     | 712   |
| 5    | Intel Core i3-8300T | 8th Gen (Coffee Lake)  | 35W         | SUPPORTED     | 412   |
| 6    | Intel Core i5-6500  | 6th Gen (Skylake)      | 65W         | INCOMPATIBLE  | 398   |
| 7    | Intel Core i5-6300U | 6th Gen (Skylake)      | 15W         | INCOMPATIBLE  | 389   |

# 4. DETAILED HARDWARE APPENDIX

Aggregated inventory of **8,143** devices. Sorted by **Type > Manufacturer > Count**.

| TYPE    | MANUFACTURER              | MODEL                          | RELEASE | STATUS         | COUNT | CO2E/YR |
|---------|---------------------------|--------------------------------|---------|----------------|-------|---------|
| Desktop | Dell Dell                 | OptiPlex 5070 (i3-9100T)       | 2019    | END OF SUPPORT | 1,184 | 473.6 t |
| Desktop | Dell Dell                 | OptiPlex 3020 (i5-4590)        | 2014    | OBSOLETE       | 205   | 82.0 t  |
| Desktop | Dell<br>Technologies Dell | OptiPlex 745 (Core 2)          | 2006    | OBSOLETE       | 92    | 36.8 t  |
| Desktop | Dell<br>Technologies Dell | OptiPlex 780 (Core 2)          | 2009    | OBSOLETE       | 54    | 21.6 t  |
| Desktop | Dell Dell                 | OptiPlex 755 (Core 2)          | 2007    | OBSOLETE       | 51    | 20.4 t  |
| Desktop | Dell<br>Technologies Dell | OptiPlex 7010 (i3-3220)        | 2012    | OBSOLETE       | 24    | 9.6 t   |
| Desktop | Dell<br>Technologies Dell | OptiPlex 3050 (i5-7500)        | 2017    | OBSOLETE       | 14    | 5.6 t   |
| Desktop | <b>Љ</b> НР               | ProDesk 600 G4 DM (i3-8300T)   | 2018    | OBSOLETE       | 412   | 164.8 t |
| Desktop | <b>(</b> ) НР             | EliteDesk 800 G3 SFF (i5-6500) | 2017    | OBSOLETE       | 398   | 159.2 t |
| Desktop | <b>(</b> ) НР             | ProDesk 600 G5 DM (i3-9300T)   | 2019    | END OF SUPPORT | 276   | 110.4 t |
| Desktop | <b>(</b> ) НР             | EliteDesk 800 G2 SFF (i5-6600) | 2015    | OBSOLETE       | 87    | 34.8 t  |
| Desktop | <b>Ф</b> НР               | EliteDesk 800 G3 DM (i5-7500T) | 2017    | OBSOLETE       | 41    | 16.4 t  |
| Desktop | Lenovo                    | ThinkCentre M710 (i5-7400T)    | 2017    | OBSOLETE       | 32    | 12.8 t  |
| Desktop | Lenovo                    | ThinkCentre M93p (i5-4570)     | 2013    | OBSOLETE       | 18    | 7.2 t   |
| Laptop  | Dell<br>Technologies Dell | Latitude 5400 (i5-8365U)       | 2019    | END OF SUPPORT | 1,132 | 198.1 t |

| TYPE   | MANUFACTURER              | MODEL                         | RELEASE | STATUS         | COUNT | CO2E/YR |
|--------|---------------------------|-------------------------------|---------|----------------|-------|---------|
| Laptop | Dell<br>Todrocquis        | Latitude 3400 (i5-8265U)      | 2019    | END OF SUPPORT | 662   | 115.8 t |
| Laptop | Dell Dell                 | Latitude 3410 (i5-10210U)     | 2020    | MAINSTREAM     | 166   | 29.0 t  |
| Laptop | Dell Dell                 | Latitude E6400 (Core 2)       | 2008    | OBSOLETE       | 83    | 14.5 t  |
| Laptop | Dell<br>Technologis       | Precision 5540 (i9-9980HK)    | 2019    | END OF SUPPORT | 58    | 10.1 t  |
| Laptop | Dell<br>Technologies Dell | Latitude 5580 (i5-7300U)      | 2017    | OBSOLETE       | 38    | 6.6 t   |
| Laptop | <b>Ф</b> НР               | EliteBook 840 G6 (i5-8265U)   | 2019    | END OF SUPPORT | 712   | 124.6 t |
| Laptop | <b>Ф</b> НР               | EliteBook 840 G3 (i5-6300U)   | 2016    | OBSOLETE       | 389   | 68.1 t  |
| Laptop | ♠ HP                      | EliteBook 840 G5 (i5-8350U)   | 2018    | OBSOLETE       | 345   | 60.3 t  |
| Laptop | ♠ HP                      | EliteBook 840 G7 (i5-10310U)  | 2020    | MAINSTREAM     | 164   | 28.7 t  |
| Laptop | ♠ HP                      | ZBook 15u G3 (i7-6500U)       | 2016    | OBSOLETE       | 126   | 22.1 t  |
| Laptop | Lenovo                    | ThinkPad T490s (20Q6)         | 2019    | END OF SUPPORT | 289   | 50.6 t  |
| Laptop | Lenovo                    | ThinkPad E570 (20H1)          | 2017    | OBSOLETE       | 245   | 42.9 t  |
| Laptop | - Lenovo                  | ThinkPad E460 (20ET)          | 2016    | OBSOLETE       | 210   | 36.7 t  |
| Laptop | Lenovo                    | ThinkPad T480 (20L6)          | 2018    | OBSOLETE       | 188   | 32.9 t  |
| Laptop | Microsoft                 | Surface Book 2 (i7-8650U)     | 2017    | OBSOLETE       | 3     | 0.5 t   |
| Laptop | Microsoft                 | Surface Laptop 4 (i7-11th)    | 2021    | MAINSTREAM     | 1     | 0.17 t  |
| Server | cisco Cisco               | UCSC-C220-M4S (Xeon E5)       | 2016    | OBSOLETE       | 5     | 8.0 t   |
| Server | Dell<br>Technologies Dell | PowerEdge R340 (Xeon E-22xx)  | 2018    | OBSOLETE       | 20    | 32.0 t  |
| Server | Dell<br>Technologies      | PowerEdge 2950 (Xeon 5130)    | 2006    | OBSOLETE       | 12    | 19.2 t  |
| Server | Dell<br>Technologies Dell | PowerEdge R710 (Xeon 5650)    | 2009    | OBSOLETE       | 10    | 16.0 t  |
| Server | ♠ HP                      | ProLiant DL380 G7 (Xeon 56xx) | 2010    | OBSOLETE       | 4     | 6.4 t   |
| Server | IBM IBM                   | Power 8 (8284-22A)            | 2014    | OBSOLETE       | 6     | 9.6 t   |
| Server | IBM IBM                   | 9080-MHE (Power 8)            | 2014    | OBSOLETE       | 2     | 3.2 t   |
| Server | Oracle                    | SPARC-M8                      | 2017    | OBSOLETE       | 2     | 3.2 t   |
|        |                           |                               |         |                |       |         |

# **APPENDIX B: METHODOLOGY & AUDIT TRAIL**

#### 1. Data Ingestion & Normalization

The complete dataset (all\_devices.csv, 8,143 rows) was processed. Normalization rules were applied to standardize manufacturer names (e.g., "Hewlett-Packard" -> "HP") and deduplicate model variations (e.g., "OptiPlex 5070 SFF" merged into "OptiPlex 5070"). Duplicate entries based on unique System IDs were filtered out to ensure asset count accuracy.

### 2. Carbon Footprint Methodology (Scope 3 Scope)

CO2e values are derived using the PAIA (Product Attribute to Impact Algorithm) model, which is the standard used by Dell, HP, and Lenovo for EPDs. We use a 4-year lifespan amortization to calculate the annual impact.

```
Annual_CO2 = (Operational_CO2 + (Embodied_CO2 / 4)) * Count

Standard Factors Used (Source: Dell/HP Carbon Sheets 2022):

Laptops: 175 kg CO2e/yr (based on Latitude 5000 avg)

Desktops: 400 kg CO2e/yr (based on OptiPlex 5000 avg + 24"
```

• Servers:  $\mathbf{1,600}$  kg  $\mathbf{CO2e/yr}$  (based on PowerEdge R740 avg, PUE 1.5)

\*Note: PUE (Power Usage Effectiveness) of 1.5 is applied to Server operational values to account for data center cooling/overhead.

### 3. Financial & Energy Formulas

Energy costs are calculated using the **TEWI** (Total Equivalent Warming Impact) concept, strictly for the operational phase.

```
Cost_Annual = (Watts × Hours × 365) / 1000 × Rate

Assumptions (Global Avg):

• Rate: $0.15 / kWh

• Laptop Load: 45W (8hrs/day)

• Desktop Load: 150W (8hrs/day)

• Server Load: 550W (24hrs/day)
```

#### 4. Windows 11 Compliance Logic

Compliance status is binary based on Microsoft's official CPU support requirements.

- Sufficient: Intel 8th Gen (Coffee Lake) and newer, AMD Ryzen 2000 and newer.
- Incompatible: Intel 7th Gen (Kaby Lake) and older, all Core 2 Duo/Pentium/Atom.

#### Disclaimer

Monitor)

The information contained in this report is based on the software inventory data provided by Example Client. The analysis and recommendations are for advisory purposes only. Licenseware makes no warranties, express or implied, regarding the completeness or accuracy of the source data. The financial and compliance risks identified are estimates based on this data and industry-standard licensing models. The Carbon and Energy calculations are estimations based on industry averages (PAIA/TEWI) and may not reflect the exact power draw of specific configurations.